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Abstract In some physical problems it is necessary to obtain a function coming from
the inversion of an unstable problem, and use it to calculate some global quantities
by integrating it weighted by the appropriate weighting functions. When the desired
function comes from a first kind Volterra integral equation, the explicit inversion can be
avoided by integrating by parts in the integrals in which the above mentioned function
appears. That is the case of the fundamental parameters method of x-ray fluorescence
analysis. To obtain the concentrations of chemical elements in the sample which is
analyzed it is necessary to calculate some integrals of the spectral distribution of the
fluorescence exciting x-ray beam multiplied by a weighting function which depends on
the concrete analysis to be done. The spectral distribution of the fluorescence exciting
beam is related to the experimental measurements of the fluorescence excited on a set
of targets made up of pure elements by a Volterra integral equation of the first kind,
and it can be obtained by inverting the Volterra equation. By integrating by parts in the
integrals in which the spectral distribution appears we avoid the unstable reconstruction
of the spectrum of the fluorescence exciting x-ray beam and the concentrations can be
calculated in a stable fashion.

Keywords Volterra integral equation of the first kind · Global quantities ·
Stable

1 Introduction

In a wide class of physical problems it is necessary to obtain, in an unstable way,
from a set of measurements, M, a function, V , but such a function is only needed to
calculate global quantities Q, defined as integrals of that function V multiplied by some
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weighting function W . These global quantities, Q, may be considered as generalized
moments of V (see the Sect. 7.4 Finding Generalized Moments of Solutions of the
book of G. Milton Wing) [1].

In an symbolic and informal way we can write:

M = A V (1.1)

where A represents the action of the experimental apparatus or procedure.
The global quantities Q are defined as:

Q =
∫

V W (1.2)

with

V = A−1 M (1.3)

A−1 habitually represents the unstable inversion of an ill posed problem, so, we must
rely on the regularizing properties of the integration process in order to have a reliable
value for Q.

But the global quantities Q can informally be also written as:

Q =
∫

(A−1 M ) W =
∫

M (A−1+W ) (1.4)

whatever A−1+ means.
The unstable application of A−1 to experimental data is avoided and A−1+ is applied

to W which usually is (or can be represented) as a known elementary function and we
can have A−1+W represented also by an elementary function and the integral can be
calculated in a stable fashion.

This methodology has been formalized by the author for two physical problems.
In the first one [2], M is the narrow beam attenuation curve of an x-ray beam, V is

the spectral distribution of the above mentioned beam, A is directly related with the
Laplace transform and Q are dosimetric and radiometric quantities. W and A−1+W
are represented by a pair of analytical Laplace transforms [3–6].

In the second one [7], M is the number of Kα photons produced on a set of fluo-
rescence thin targets made of pure chemical elements, V is the spectral distribution
of the fluorescence exciting beam, A is a Volterra integral equation of the first kind
with separable kernel and Q are concentrations of chemical elements. A is reduced to
a derivative, and, when integrating by parts, A−1+W is the derivative of W .

Here we present a general approach for physical problems where A is a Volterra
equation of the first kind without restricting the kernel to be separable.
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2 The case of volterra equations of the first kind

When the desired function comes from a first kind Volterra integral equation, the
explicit inversion can be avoided by integrating by parts in the integrals in which the
above mentioned function appears.

We will follow in this section the notation of the classical book on integral equations
of Tricomi [9].

A Volterra integral equation of the first kind

x∫

0

K (x, y) φ(y) dy = f (x) (0 ≤ x ≤ h) (2.1)

with a nonvanishing ‘diagonal ’K (x, x) in the basic interval (0, h), and if the deriva-
tives

d f (x)

dx
≡ f ′(x),

∂K

∂x
≡ K ′

x (x, y),
∂K

∂y
≡ K ′

y(x, y) (2.2)

exist and are continuous, can be reduced to one of the second kind in the following
way:

If we set

x∫

0

φ(y) dy = �(x), (2.3)

we obtain the second kind Volterra equation

�(x) −
x∫

0

K ′
y(x, y)

K (x, x)
�(y) dy = f (x)

K (x, x)
, (2.4)

which can be stably solved in a standard stable way using iterative methods or the
resolvent kernel.

The calculation of global quantities

Q =
h∫

0

φ(x) W (x) dx (2.5)

can be accomplished in the following way: By integrating by parts we get

Q = [�(x) W (x)]h
0 −

h∫

0

�(x) W ′(x) dx (2.6)
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3 Stability analysis

Sometimes, the weighting function W (x) is obtained in a numerical way, and the
numerical derivative, W ′(x), is unstable. Let us analyze what happens if W (x) is
fitted by a derivable elementary function W f itted(x).

By integrating by parts Q f itted = ∫ h
0 φ(x) W f itted(x) dx, the following identity

appears:

Q f itted =
h∫

0

φ(x) W f itted(x) dx ≡ [
�(x) W f itted(x)

]h
0

−
h∫

0

�(x) W ′
f i t ted(x) dx (3.1)

Comparing

Q f itted =
h∫

0

φ(x) W f itted(x) dx (3.2)

with

Q =
h∫

0

φ(x) W (x) dx (3.3)

we get

Q − Q f itted =
h∫

0

φ(x) (W (x) − W f itted(x)) dx (3.4)

and using the Schwartz inequality

(Q − Q f itted)2 ≤
⎛
⎝

h∫

0

φ(x) (W (x) − W f itted(x)) dx

⎞
⎠

2

≤
h∫

0

φ(x) 2 dx

h∫

0

(W (x) − W f itted(x))2 dx, (3.5)
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so, if W f itted(x) is near W (x) in the L2 sense, the difference between Q and Q f itted

is small and Q can be approximated by Q f itted calculated as

Q f itted = [
�(x) W f itted(x)

]h
0 −

h∫

0

�(x) W ′
f i t ted(x) dx (3.6)

A similar argument can be used when instead of �(x) we have a function
�approximate(x) coming from an experimentally measured f (x), fexperimental(x),
and also when the kernel K (x, y) is known numerically and a fit K f itted(x, y) to a
derivable function has to be used in order to calculate the derivative K ′

y(x, y).

4 An example: x-ray fluorescence analysis by the fundamental parameters
method

In the case of the fundamental parameters method of x-ray fluorescence analysis [7],
the knowledge of the spectral distribution of the fluorescence exciting x-ray beam is
needed in order to calculate the concentrations of chemical elements in the sample
analyzed.

To obtain the concentrations it is necessary to calculate some integrals of the spec-
tral distribution of the fluorescence exciting beam multiplied by a weighting function
which depends on the concrete analysis to be done. The spectral distribution of the
fluorescence exciting beam is related to the experimental measurements of the fluores-
cence excited on a set of targets made of pure elements by a Volterra integral equation
of the first kind, and it can be obtained by inverting the Volterra equation. The unsta-
ble explicit inversion of the first kind Volterra integral equation can be avoided by
integrating by parts in the integrals in which the spectral distribution appears.

When considering a sample excited by an x-ray beam, the fluorescence intensity Ii

as emitted by one of the elements in the sample is generically written as:

Ii =
Emax∫

EZ

φ(hν) f (hν)dhν (4.1)

where Emax is the maximum x-ray beam energy, and f (hν) is a function depending
upon the actual excitation conditions. For the real case of a homogeneous multicom-
ponent thick sample, function f (hν) is:

f (hν) = ε(Kαi )
Ci√

2

σi (hν)

μs(Kαi ) + μs(hν)
(4.2)

where Kαi is the energy corresponding to line Kα of the the i-th element, ε(Kαi ) is
the detection efficiency for the Kαi x-rays, Ci is the concentration of the said element,
σi (hν) is the fluorescence production cross-section of the i-th element μs(Kαi ) is the
mass attenuation coefficient of the sample at the energy of the Kα x-rays of the i-th
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element, and μs(hν) is the mass attenuation coefficient of the sample at energy hν.
Incidence and exit angles are 450.

The spectral distribution of the fluorescence exciting beam can be related to the
experimental measurements of the fluorescence excited on a set of targets made of
pure elements by a Volterra integral equation of the first kind, and it can be obtained
by inverting the integral equation. When the targets are thin, the kernel is separable,
but by experimental considerations [8] it is convenient to use a set of thick targets,
and, in that case the kernel is not separable, and the general formalism presented for
first kind Volterra equations has to be used.

Let us consider an infinite-thickness sample of atomic number Z which is excited
by an x-ray beam. The fluorescence emission intensity N (EZ ) of such sample can be
expressed as:

NZ ,∞ = ε(KαZ )
1√
2

Emax∫

EZ

φ(hν)σZ (hν)

μZ (KαZ ) + μZ (hν)
dhν (4.3)

where EZ is the binding energy of the samples K shell, Emax is the energy of the
end point of the excitation x-ray beam, ε(KαZ ) is the detection efficiency for the Kα

x-rays of the element Z , φ(hν) is the differential spectral distribution of the excitation
beam photon flux, σZ (hν) is the fluorescence cross section for the Kα x-rays, μZ (hν)

is the mass attenuation coefficient of the sample Z at energy hν, and μZ (Kα) is the
attenuation energy for the Kα x-rays emitted by the sample Z .

Let us assume that variable EZ is a continuous variable E , then a first kind Volterra
integral equation can be written

N (E) = ε(Kα(E))
1√
2

Emax∫

E

φ(hν)σ (E, hν)

μ(Kα(E)) + μ(E, hν)
dhν (4.4)

or

N (E) =
Emax∫

E

φ(hν) K (E, hν) dhν (4.5)

with

K (E, hν) = ε(Kα(E))
1√
2

φ(hν) σ (E, hν)

μ(Kα(E)) + μ(E, hν)
(4.6)

The explicit unstable inversion of the first kind Volterra integral equation needed
to obtain explicitly the spectral distribution can be avoided by integrating by parts in
the integrals in which the spectral distribution appears. Defining
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−
Emax∫

hν

φ(y) dy = �(hν) (4.7)

the first kind Eq. (4.5) becomes a second kind Volterra equation which can be solved
in a standard stable way using iterative methods or the resolvent kernel.

N (E) = [ �(hν) K (E, hν)]Emax
E −

Emax∫

E

K ′
hν(E, hν)�(hν) dhν (4.8)

�(E) = − N (E)

K (E, E)
−

Emax∫

E

K ′
hν(E, hν)

K (E, E)
�(hν) dhν (4.9)

By using the value of �(hν) from (4.7) and that of f (hν) from (4.2) in (4.1) and
integrating by parts, we have the following expression for the measured fluorescence
intensity of the i-th element, Ii :

Ii = [�(hν) f (hν)]Emax
EZ

−
Emax∫

EZ

�(hν) f ′
hν(hν)dhν (4.10)

The values of the concentrations Ci are obtained by solving the equation system
made up from the theoretical expressions (4.10) where �(hν) is obtained in an stable
way from the experimental values of fluorescence Ni (Ei ).

5 Conclusions

It has been shown that the unstable explicit inversion of a first kind Volterra integral
equation can be avoided when the searched function is used only to calculate global
quantities by integrating it weighted by weighting functions. The first kind Volterra
integral equation is converted, by integrating by parts, in a second kind Volterra inte-
gral equation, which can be solved in a stable way. The integrals defining the global
quantities are modified by integrating by parts and can be calculated using the stable
solution of the second kind Volterra integral equation.

It has been presented a concrete example dealing with the fundamental parameters
method of x-ray fluorescence analysis.
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